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L E m R  TO THE EDITOR 

Derivation properties of a deformed Poisson algebra and 
the quantisation problem 

C N Ktoridest and L Ch PapaloucasS 
t Physics Department, University of Athens, Athens, Greece 
$ Institute of Mathematics, University of Athens, Athens, Greece 

Received 24 May 1982 

Abstract. We examine the derivation properties of a deformed Poisson algebra of classical 
observables. Our considerations point to possibly new realisations concerning the quantisa- 
tion mapping. 

The mathematical aspects of the quantisation problem-have attracted a great deal of 
attention in recent years (Groenwold 1946, Van Hove 1951, Joseph 1970, Chernoff 
1969, Abraham and Marsden 1978, Segall960, Auslander and Kostant 1966, Kostant 
1967/8 (cf Kostant 1970), Souriau 1970, Kirillov 1976, Bayen et a1 1978). In this 
letter we will attempt to make a connection between two different approaches to this 
problem. Our hope is that the realisations emerging from the proposed synthesis will 
contribute toward a better understanding of the quantisation process. 

Throughout this letter P denotes the set of all complex polynomials in the 2n real 
variables p i  and qi. As is well known, P acquires a Lie algebra structure via the Poisson 
bracket 

By d we denote the associative, distributive algebra over C generated by finite 
linear combinations and finite powers of the elements d l , .  . . , &,el,. . . ,en and I. SQ 
becomes a Lie algebra via the usual Heisenberg relations 

and as such it will be denoted by 8. 
Joseph (1970) has noted the lack of isomorphism between the Lie algebras P and 

8. This is because 8 possesses only inner derivations while P possesses, according 
to Wollenberg’s (1969) theorem, outer derivation as well. The basic reason for this 
occurrence is that every derivation D(1) is not necessarily zero for P. The explicit 
expression for a general derivation D of P turns out to be of the form 

for some a, E P, CY, P E C. 
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Now two Lie algebras cannot be isomorphic if their derivation algebras are not. 
As a result, the Dirac quantisation prescription, Poisson bracket -* operator commuta- 
tion relation, cannot be uniquely effected. This occurrence has also been noted by 
Chernoff (198 1). 

Joseph has been able to identify respective subalgebras R, and Se, of P and B 
which have strikingly similar derivation properties. Namely ad Ri and ad Sei form 
ideals of codimension 1 in D(RJ and D(W,) respectively, where by D(U) we denote 
the derivation algebra of a Lie algebra U. Moreover he has determined that there 
exists an isomorphism between such pairs of subalgebras and has suggested that the 
solution of Dirac's problem should be sought within the framework of these 
isomorphisms. 

We presently generalise Joseph's prescription by adopting the following viewpoint. 
The quantisation process involves a mapping between two suitably selected isomorphic 
Lie subalgebras of P and 9. Presumably, the bigger the selected subalgebras the 
richer the resulting quantisation scheme. 

A straightforward case of isomorphic subalgebras occurs when they are both simple 
or semisimple, in which case they possess only inner derivations. Examples of simple 
subalgebras of P are the ones generated by ( p 2 ,  q2,  pq), (q ,pq2 ,  q p )  and (p, q2p,  qp). 
Each of these algebras happens to be isomorphic to SL(2, C). Clearly, none of them 
is rich enough to implement the quantisation of physical systems which include 
interactions. 

Non-trivial subalgebras of P which form a basis for quantisation have been sug- 
gested, from a different viewpoint, by Bayen et a1 (1978). We are referring to their 
so-called good observables which form a restricted class of functions? on phase space 
constituting a subalgebra G of P. The latter is characterised by the fact that each of 
its elements generates, by the Poisson bracket, a group of symplectic diffeomorphisms 
in phase space. Moreover, it has been suggested by Bayen et a1 (1978) that this 
restricted class of phase space functions has a predominant physical content at the 
classical level. 

It should be mentioned that the viewpoint of Bayen et a1 regarding quantisation 
is different from the one customarily adopted, i.e. as a mapping from phase space 
functions to quantum operators. The above authors see quantisation as a deformation 
of the Poisson product in P. One such deformation, with which we shall be dealing 
later on, is given by 

(4) 
where C is a suitable two-cochain in P (Goto and Grosshans 1978). 

The algebra of good observables plays a determining role concerning the choice 
of a deformation product. We shall not discuss the details of the deformation approach 
to quantisation. The interested reader can look up Bayen et a1 (1978). What we do 
find remarkable is the fact that two algebras of good observables identified by Bayen 
et a1 for the Kepler two-body problem happen to be simple. This means that each 
of them possesses only inner derivations. Furthermore, they can be mapped on 
isomorphic subalgebras of operators in 9 and thus satisfy our quantisation criterion. 

Encouraged by the specific realisations stemming from the Kepler two-body 
problem, we shall now seek a more general result. In particular we ask whether the 
t We point out that in the analysis of Bayen et al (1978) one considers C" functions on phase space. In 
our case we shall restrict ourselves to polynomial functions, i.e. elements of P Thus by functions on phase 
space we mean polynomial functions. 

{f, gI+{f, gI* =if, gI+AC(f, g )  
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deformation of P given by (4) leads to an algebra PA of classical functions which 
possess only inner derivations. If such becomes the case, then a mapping from PA to 
9 is conceivable. 

In order to formulate a sufficiency condition that PA has only inner derivations we 

To begin with, if D is inner a, and aq should be expressible in the form 
proceed as follows. 

-up (4, B)A = (9, B) + AC(q, B) = aB/aP + AC(q, B) (13) 
for some B(p,  q )  E P. 

Similarly we should have 

aq = -aB/aq + A C ( ~ ,  B) .  

Take B(p ,  q )  to be of the form 

B (P, 4 )  = b ( p ,  ) + b i(q) + bz(P ). 

It follows that 

aB/aq = ab/aq +abl/aq = ab/aq + f(q) 

and 

aB/ap = ab/ap +abz/ap = ab/ap + g ( p ) .  
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Substituting (13) and (14) in (16) and (17) respectively, we obtain 

-up = a b / a p + g ( p ) + A C ( q , B ) ,  (18) 

U, = -ab/aq - f (q)+AC(p,  B). t 19) 

aa,/aq = --a2b/aq ap - A  K ( q ,  B)/aq, (20) 

aa,/ap = a2b/aq ap + A  ac(p,  ~ ) / a p .  (21) 

From (18) and (19) it follows that 

Finally, substituting in condition (12), we get 

(22) 

This is the desirable condition. If for a given choice of B there exists a cochain 

A particular choice occurs if C(q, B) is a function of p only and C(p,  B) a function 

(23) 

One might suspect that the above condition leads to the trivial requirement that 
D(1) = 0. However, despite an extensive search of the literature, we were not able 
to identify a proof that DC(p, 4 )  is equal to C(Dp, 4 )  + C(p ,  Dq), even for derivations 
D of P. 

a a 
a4 aP 

D(1) +ADC(P, 4) = AC(DP, 4 )  +AC(p, 0 4 )  - A  - C(q, B) - A  - C ( p ,  B). 

C satisfying (22) then PA has only inner derivations. 

of q only. For such a situation condition (22) assumes the simple form 

3 (1) = A [C(DP, 4 )  + C(P, Dq 1 - D  ( P ,  4 11. 

A more interesting possibility takes place if one sets 

C(P, B) = p f ( p ,  41, C(4, B) = d ( P ,  4) .  ( 2 4 ~  b )  

asp, B>/ap = f + p  a f /ap ,  ac(s,B)/aq = f + q  af/as. (25a, b )  

(26) 

The right-hand side of the above expression bears striking resemblance to the outer 
derivation term entering Wollenberg’s theorem. One suspects that condition (26), for 
a suitable choice of C and D(1), accounts for the absence of Wollenberg’s term from 
PA derivations. 

It is remarkable that the deformation product offers the possibility for constructing 
classical algebras PA of phase space functions which have the same property as the 
algebra B of operators, namely that every derivation of PA is inner. 

It follows that 

Substituting in (22) we obtain 

(1) + A D C  ( P ,  4 1 - c (DP, 4 1 - c ( P ,  D4 11 = -A (2f + p af/@ + 4 v/as ). 
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